
## Perfect quintuple layer Bi<sub>2</sub>Te<sub>3</sub> nanowires: Growth and thermoelectric properties

P. Schönherr, D. Kojda, V. Srot, S. F. Fischer , P. A. Van Aken, and T. Hesjedal APL Mat. **5**, 086110 (2017).

## Short Abstract

 $Bi_2Te_3$  nanowires are promising candidates for thermoelectric applications. Vapour-liquid-solid growth of these nanowires is straightforward but the traditional Au-catalysed method often leads to Au contamination and crystal defects. Here, we compare the Au-catalyzed growth method with an alternative method using TiO<sub>2</sub>. The latter approach yields perfect quintuple layer nanowires, whilst using Au leads to mixed quintuple and septuple layer structures. While  $Bi_2Te_3$  has a high thermoelectric efficiency one obstacle on the road to more efficient thermoelectric  $Bi_2Te_3$  nanowires is a high intrinsic doping by antisite defects, which can be reduced through annealing. Here, we demonstrate how to control the crystal structure of  $Bi_2Te_3$  nanowires through the choice of catalyst, and present measurements of the basic thermoelectric properties.



**Above**. Sketch of a cross section taken from a  $Bi_2Te_3$  nanowire. The cross section is taken perpendicularly to the long axis. (b) HAADF-STEM image of a cross section taken from a  $TiO_2$ -catalyzed  $Bi_2Te_3$  nanowire. A circle indicated the location of the high-resolution scan. (c) HAADF-STEM image of a cross section taken from an Aucatalyzed  $Bi_2Te_3$  nanowire. Dark holes are caused by thinning the samples through ion milling. A circle indicated the location of the high-resolution scan.